99精品欧美一区二区三区综合在线,国产精品一区二区的,欧美亚洲国产日韩综合,99精品视频在线观看2

掃碼關(guān)注公眾號           掃碼咨詢技術(shù)支持           掃碼咨詢技術(shù)服務(wù)
  
客服熱線:400-901-9800  客服QQ:4009019800  技術(shù)答疑  技術(shù)支持  質(zhì)量反饋  關(guān)于我們  聯(lián)系我們
亚洲国产剧情高清av,国产亚洲欧美精品视频网站,在线播放亚洲欧洲日韩
首頁 > 產(chǎn)品中心 > 一抗 > 產(chǎn)品信息
KRAS Rabbit pAb (bs-1033R)  
訂購熱線:400-901-9800
訂購郵箱:sales@www.eweiwc.cn
訂購QQ:  400-901-9800
技術(shù)支持:techsupport@www.eweiwc.cn
50ul/1180.00元
100ul/1980.00元
200ul/2800.00元
大包裝/詢價(jià)

產(chǎn)品編號 bs-1033R
英文名稱 KRAS Rabbit pAb
中文名稱 原癌基因K-ras抗體
別    名 C-K-RAS; c-Ki-ras; c-Ki-ras p21; Ha-ras; K-RAS B; K-RAS2A; K-RAS2B; K-RAS4A; KI-RAS; KI-RAS4B; KRAS; KRAS1; KRAS2; MGC7141; NS; NS3; p21; p21B; p21ras; RAS; RAS1; RASH; RASK2.  
Specific References  (1)     |     bs-1033R has been referenced in 1 publications.
[IF=4.235] Yan Y et al. ChCDC25 Regulates Infection-Related Morphogenesis and Pathogenicity of the Crucifer Anthracnose Fungus Colletotrichum higginsianum. Front Microbiol. 2020 May 8;11:763.  WB ;  Yeast two-hybrid.  
研究領(lǐng)域 腫瘤  細(xì)胞生物  免疫學(xué)  信號轉(zhuǎn)導(dǎo)  細(xì)胞凋亡  細(xì)胞膜受體  轉(zhuǎn)運(yùn)蛋白  
抗體來源 Rabbit
克隆類型 Polyclonal
交叉反應(yīng) Human,Mouse,Rat
產(chǎn)品應(yīng)用 WB=1:500-2000,IHC-P=1:100-500,IHC-F=1:100-500,IF=1:100-500,Flow-Cyt=1ug/Tset
not yet tested in other applications.
optimal dilutions/concentrations should be determined by the end user.
理論分子量 21 kDa
檢測分子量
細(xì)胞定位 細(xì)胞核 細(xì)胞漿 細(xì)胞膜 
性    狀 Liquid
濃    度 1mg/ml
免 疫 原 KLH conjugated synthetic peptide derived from human K-ras: 25-130/189 
亞    型 IgG
純化方法 affinity purified by Protein A
緩 沖 液 0.01M TBS (pH7.4) with 1% BSA, 0.02% Proclin300 and 50% Glycerol.
保存條件 Shipped at 4℃. Store at -20℃ for one year. Avoid repeated freeze/thaw cycles.
注意事項(xiàng) This product as supplied is intended for research use only, not for use in human, therapeutic or diagnostic applications.
PubMed PubMed
產(chǎn)品介紹 This gene, a Kirsten ras oncogene homolog from the mammalian ras gene family, encodes a protein that is a member of the small GTPase superfamily. A single amino acid substitution is responsible for an activating mutation. The transforming protein that results is implicated in various malignancies, including lung adenocarcinoma, mucinous adenoma, ductal carcinoma of the pancreas and colorectal carcinoma. Alternative splicing leads to variants encoding two isoforms that differ in the C-terminal region. [provided by RefSeq]

Ras, a proto-oncogene, is a small G-protein that has 3 primary isoforms (H-Ras, N-Ras, and K-Ras) that differ in there approximately 20 C-terminal amino acids. H-Ras was first discovered as a transforming product the retrovirus Harvey murine virus and K-Ras of Kirten sarcoma virus. Ras is a heavily studied target of both academic and pharmaceutical research because of its implications in various pathways and diseases as well as being mutated in a large number of human cancers. Ras is most notably the activator of the Erk/MAPK kinase pathway as activator of Raf, as well as an activator of PI3 Kinase (PI3K). In its oncogenic, mutated state, Ras is unable to hydrolyze GTP to GDP, thus staying in an active state and activating numerous pathways including the MAPK pathway through its activation of Raf, but also others as well that include PI3 Kinase and RalGDS. One path that the pharmaceutical industry has taken to control Ras and its activity is by finding what some consider its Achilles’ heel. For its activation, Ras must localize to the plasma membrane, but interestingly, it lacks a transmembrane domain. To achieve this, Ras must first undergo a post-translational modification (PTM) known as prenylation or geranylation at its C-terminal CAAX motif. For this to take place, a controlled three step process must occur. The first step in the process is the prenylation or geranylation of the C in the CAAX motif that is initiated by the covalent attachment of farnesyl groups to the cysteine that is catalyzed by the . After this modification, the and heterodimer enzymes farnesyl transferases –aaX of the motif is proteolytically removed via Rce1 (Ras Converting Enzyme 1), a membrane associated endoprotease, by a mechanism that is still not fully understood. Finally, the C-terminal prenylcysteine is now methlylated by ICMT (Isoprenylcysteine Carboxymethyl Transferase). These drugs have yet to pass clinical trials though and there is doubt that they will ever be successful in treating tumors associated with Ras activation.

Function:
Ras proteins bind GDP/GTP and possess intrinsic GTPase activity.

Subunit:
In its GTP-bound form interacts with PLCE1. Interacts with TBC1D10C. Interacts with RGL3. Interacts with HSPD1. Found in a complex with at least BRAF, HRAS1, MAP2K1, MAPK3 and RGS14. Interacts (active GTP-bound form) with RGS14 (via RBD 1 domain). Forms a signaling complex with RASGRP1 and DGKZ. Interacts with RASSF5. Interacts with PDE6D. Interacts with IKZF3. Interacts with GNB2L1.

Subcellular Location:
Cell membrane. Cell membrane; Lipid-anchor; Cytoplasmic side. Golgi apparatus. Golgi apparatus membrane; Lipid-anchor. Isoform 2: Nucleus. Cytoplasm. Cytoplasm, perinuclear region.

Tissue Specificity:
Widely expressed.

DISEASE:
Defects in KRAS are a cause of acute myelogenous leukemia (AML) [MIM:601626]. AML is a malignant disease in which hematopoietic precursors are arrested in an early stage of development. Defects in KRAS are a cause of juvenile myelomonocytic leukemia (JMML) [MIM:607785]. JMML is a pediatric myelodysplastic syndrome that constitutes approximately 30% of childhood cases of myelodysplastic syndrome (MDS) and 2% of leukemia. It is characterized by leukocytosis with tissue infiltration and in vitro hypersensitivity of myeloid progenitors to granulocyte-macrophage colony stimulating factor. Defects in KRAS are the cause of Noonan syndrome type 3 (NS3) [MIM:609942]. Noonan syndrome (NS) [MIM:163950] is a disorder characterized by dysmorphic facial features, short stature, hypertelorism, cardiac anomalies, deafness, motor delay, and a bleeding diathesis. It is a genetically heterogeneous and relatively common syndrome, with an estimated incidence of 1 in 1000-2500 live births. Rarely, NS is associated with juvenile myelomonocytic leukemia (JMML). NS3 inheritance is autosomal dominant.
Defects in KRAS are a cause of gastric cancer (GASC) [MIM:613659]; also called gastric cancer intestinal or stomach cancer. Gastric cancer is a malignant disease which starts in the stomach, can spread to the esophagus or the small intestine, and can extend through the stomach wall to nearby lymph nodes and organs. It also can metastasize to other parts of the body. The term gastric cancer or gastric carcinoma refers to adenocarcinoma of the stomach that accounts for most of all gastric malignant tumors. Two main histologic types are recognized, diffuse type and intestinal type carcinomas. Diffuse tumors are poorly differentiated infiltrating lesions, resulting in thickening of the stomach. In contrast, intestinal tumors are usually exophytic, often ulcerating, and associated with intestinal metaplasia of the stomach, most often observed in sporadic disease.
Note=Defects in KRAS are a cause of pylocytic astrocytoma (PA). Pylocytic astrocytomas are neoplasms of the brain and spinal cord derived from glial cells which vary from histologically benign forms to highly anaplastic and malignant tumors.
Defects in KRAS are a cause of cardiofaciocutaneous syndrome (CFC syndrome) [MIM:115150]; also known as cardio-facio-cutaneous syndrome. CFC syndrome is characterized by a distinctive facial appearance, heart defects and mental retardation. Heart defects include pulmonic stenosis, atrial septal defects and hypertrophic cardiomyopathy. Some affected individuals present with ectodermal abnormalities such as sparse, friable hair, hyperkeratotic skin lesions and a generalized ichthyosis-like condition. Typical facial features are similar to Noonan syndrome. They include high forehead with bitemporal constriction, hypoplastic supraorbital ridges, downslanting palpebral fissures, a depressed nasal bridge, and posteriorly angulated ears with prominent helices. The inheritance of CFC syndrome is autosomal dominant. Note=KRAS mutations are involved in cancer development.

Similarity:
Belongs to the small GTPase superfamily. Ras family.

SWISS:
P01116

Gene ID:
3845

Database links:

Entrez Gene: 3845 Human

Entrez Gene: 16653 Mouse

Entrez Gene: 24525 Rat

Omim: 190070 Human

SwissProt: P01116 Human

SwissProt: P32883 Mouse

SwissProt: P08644 Rat

Unigene: 37003 Human

Unigene: 505033 Human

Unigene: 383182 Mouse

Unigene: 24554 Rat



K-ras癌變基因的表達(dá)產(chǎn)物Ras蛋白存在于多數(shù)腫瘤之中,目前是腫瘤研究較重要的蛋白之一。
產(chǎn)品圖片
Sample: Lane 1: Human 293T cell lysates Lane 2: Human Hela cell lysates Lane 3: Human A549 cell lysates Primary: Anti-KRAS (bs-1033R) at 1/1000 dilution Secondary: IRDye800CW Goat Anti-Rabbit IgG at 1/20000 dilution Predicted band size: 21 kD Observe
Sample: HL60(Human) Cell Lysate at 30 ug Primary: Anti- KRAS (bs-1033R) at 1/1000 dilution Secondary: IRDye800CW Goat Anti-Rabbit IgG at 1/20000 dilution Predicted band size: 21 kD Observed band size: 21 kD
Sample: NIH/3T3(Mouse) Cell Lysate at 30 ug Primary: Anti-KRAS (bs-1033R) at 1/300 dilution Secondary: IRDye800CW Goat Anti-Rabbit IgG at 1/20000 dilution Predicted band size: 21 kD Observed band size: 23 kD
Paraformaldehyde-fixed, paraffin embedded (human gastric carcinoma); Antigen retrieval by boiling in sodium citrate buffer (pH6.0) for 15min; Block endogenous peroxidase by 3% hydrogen peroxide for 20 minutes; Blocking buffer (normal goat serum) at 37°C f
Paraformaldehyde-fixed, paraffin embedded (rat spleen); Antigen retrieval by boiling in sodium citrate buffer (pH6.0) for 15min; Block endogenous peroxidase by 3% hydrogen peroxide for 20 minutes; Blocking buffer (normal goat serum) at 37°C for 30min; Ant
Paraformaldehyde-fixed, paraffin embedded (rat brain); Antigen retrieval by boiling in sodium citrate buffer (pH6.0) for 15min; Block endogenous peroxidase by 3% hydrogen peroxide for 20 minutes; Blocking buffer (normal goat serum) at 37°C for 30min; Anti
Paraformaldehyde-fixed, paraffin embedded (mouse brain); Antigen retrieval by boiling in sodium citrate buffer (pH6.0) for 15min; Block endogenous peroxidase by 3% hydrogen peroxide for 20 minutes; Blocking buffer (normal goat serum) at 37°C for 30min; An
Paraformaldehyde-fixed, paraffin embedded (Human kidney); Antigen retrieval by boiling in sodium citrate buffer (pH6.0) for 15min; Block endogenous peroxidase by 3% hydrogen peroxide for 20 minutes; Blocking buffer (normal goat serum) at 37°C for 30min; A
Blank control (Black line):Molt4 (Black). Primary Antibody (green line): Rabbit Anti-KRAS antibody (bs-1033R) Dilution: 1μg /10^6 cells; Isotype Control Antibody (orange line): Rabbit IgG . Secondary Antibody (white blue line): Goat anti-rabbit IgG-
版權(quán)所有 2004-2026 www.www.eweiwc.cn 北京博奧森生物技術(shù)有限公司
通過國際質(zhì)量管理體系ISO 9001:2015 GB/T 19001-2016    證書編號: 00124Q34771R2M/1100
通過國際醫(yī)療器械-質(zhì)量管理體系ISO 13485:2016 GB/T 42061-2022    證書編號: CQC24QY10047R0M/1100
京ICP備05066980號-1         京公網(wǎng)安備110107000727號
亚洲Av无码专区一区二区三区| 国产又粗又猛又色又免费| 手机成人三级a在线观看| 国产亚洲精品一区久久| 亚洲狠狠插狠狠搞狠狠摸| 2021国产精品自在自线| 国语自产免费精品视频在| 顶的速度越来越快越| 潮中文字幕在线观看| 爆乳喷奶水无码正在播放| 美国女人抠插bbb| 国产精品白浆一区二区三区| 久久久久黑人强伦姧人妻| 精品福利一区二区三区在线观看| 国产高清乱码女大生AV| 欧美猛男一区二区三区快播| 亚洲国产精品一区亚洲国产| 午夜十八禁福利亚洲一区二区| 操纯欲女生小穴视频| 男的鸡巴插女的视频| 大鸡巴操淫逼视频| 中文字幕乱码一区二区三区麻豆| 中文字幕人妻一区二区三区人妻| 99久久久国产精品k影| 开心五月播五月亚洲第一| 九九在线精品亚洲国产| 大鸡巴插我在线观看| 国产乱精品一区二区三区视频了| 成人精品视频区一区二区三| 操批在线观看视频| 欧美猛男一区二区三区快播| 精品的极品美女一区二区三区| 操老女人大逼视频| 婷婷6月天丁香综合在线| 中文字幕人妻一区二区三区人妻| 加勒比五月综合久久伊人| 男人和女人干污污| 无码中文字幕免费一区二区三区| 免费骚逼潮吹av| 国产伦精品一区二区三区视频抖音| 亚洲av熟妇高潮精品啪啪|